1,958 research outputs found

    Retinol deficiency and Dipetalonema viteae infection in the hamster

    Get PDF
    Following chronic retinol (vitamin A) deprivation leading to exhaustion of liver vitamin A reserves below 50 I.U. per liver hamsters were fed diets either deficient in ("Rd”: 250 I.U.A/kg in experiment I, 1000 I.U.A/kg in experiment II) or enriched with retinol ("Rw”: 10000 I.U.A/kg in experiment I and II). After 4 weeks some of the animals (36 in experiment I, 30 in II) were infected with 150 3rd-stage larvae of D. viteae, while clean animals were kept as controls. The retinol status, the immune response (indirect fluorescent antibody test: IFAT) and parasitological parameters were examined up to 8 (experiment I) and 12 weeks (experiment II) post infection (p.i.). Rd hamsters had levelling off of weight gain or weight loss, severely deficient retinol levels in serum and liver, and high mortality. Weight gain was less in infected than in uninfected hamsters, and the capacity of infected Rw animals to restore liver retinol was significantly lower than that of uninfected Rw animals. IFAT titres were similar in Rd and in Rw animals, but microfilaraemia was significantly enhanced at 8 and 10·5 weeks p.i. in Rd hamsters. While the number of worms recovered from Rd and Rw hamsters was similar, there was a significant increase in the ratio of female to male worms in Rd hamsters. Rd hamsters in experiment I produced 3·3 times the worm mass per 100 g body-weight than Rw hamsters. Also, the average mass per female worm was significantly higher in Rd than in Rw hamsters, and this parameter was negatively correlated with the liver retinol concentration in experiment I (r=−0·89). Retinol deficiency has a marked effect on growth and fertility of D. viteae in hamster

    Thermalization in a quasi-1D ultracold bosonic gas

    Full text link
    We study the collisional processes that can lead to thermalization in one-dimensional systems. For two body collisions excitations of transverse modes are the prerequisite for energy exchange and thermalzation. At very low temperatures excitations of transverse modes are exponentially suppressed, thermalization by two body collisions stops and the system should become integrable. In quantum mechanics virtual excitations of higher radial modes are possible. These virtually excited radial modes give rise to effective three-body velocity-changing collisions which lead to thermalization. We show that these three-body elastic interactions are suppressed by pairwise quantum correlations when approaching the strongly correlated regime. If the relative momentum kk is small compared to the two-body coupling constant cc the three-particle scattering state is suppressed by a factor of (k/c)12(k/c)^{12}, which is proportional to γ12\gamma ^{12}, that is to the square of the three-body correlation function at zero distance in the limit of the Lieb-Liniger parameter γ1\gamma \gg 1. This demonstrates that in one dimensional quantum systems it is not the freeze-out of two body collisions but the strong quantum correlations which ensures absence of thermalization on experimentally relevant time scales.Comment: revtex4, 3 figures. Final version of the text, accepted for publication (see journal ref.

    Global turbulence simulations of the tokamak edge region with GRILLIX

    Full text link
    Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electromagnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied. The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Comput.Phys.Commun. 184:2419, (2013); A. Stegmeir et al., Comput.Phys.Commun. 198:139, (2016)], which allows to study realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq approximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards the X-point

    The online data pre-processing for CBM-TOF

    Get PDF

    Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates

    Full text link
    I study the evolution of mean field and linear quantum fluctuations in a toroidal Bose-Einstein condensate, whose interaction strength is quenched from a finite (repulsive) value to zero. The azimuthal equal-time density-density correlation function is calculated and shows temporal oscillations with twice the (final) excitation frequencies after the transition. These oscillations are a direct consequence of positive and negative frequency mixing during non-adiabatic evolution. I will argue that a time-resolved measurement of the equal-time density correlator might be used to calculate the moduli of the Bogoliubov coefficients and thus the amount of squeezing imposed on a mode, i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl

    Dynamics of quantum dot superradiance

    Full text link
    The possibility of realizing the superradiant regime of electromagnetic emission by the assembly of quantum dots is considered. The overall dynamical process is analyzed in detail. It is shown that there can occur several qualitatively different stages of evolution. The process starts with dipolar waves triggering the spontaneous radiation of individual dots. This corresponds to the fluctuation stage, when the dots are not yet noticeably correlated with each other. The second is the quantum stage, when the dot interactions through the common radiation field become more important, but the coherence is not yet developed. The third is the coherent stage, when the dots radiate coherently, emitting a superradiant pulse. After the superradiant pulse, the system of dots relaxes to an incoherent state in the relaxation stage. If there is no external permanent pumping, or the effective dot interactions are weak, the system tends to a stationary state during the last stationary stage, when coherence dies out to a low, practically negligible, level. In the case of permanent pumping, there exists the sixth stage of pulsing superradiance, when the system of dots emits separate coherent pulses.Comment: Latex file, 31 pages, 3 figure

    Comparative Ground Validation of IMERG and TMPA at Variable Spatiotemporal Scales in the Tropical Andes

    Get PDF
    An initial ground validation of the Integrated Multisatellite Retrievals for GPM (IMERG) Day-1 product from March 2014 to August 2015 is presented for the tropical Andes. IMERG was evaluated along with the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) against 302 quality-controlled rain gauges across Ecuador and Peru. Detection, quantitative estimation statistics, and probability distribution functions are calculated at different spatial (0.1°, 0.25°) and temporal (1 h, 3 h, daily) scales. Precipitation products are analyzed for hydrometeorologically distinct subregions. Results show that IMERG has a superior detection and quantitative rainfall intensity estimation ability than TMPA, particularly in the high Andes. Despite slightly weaker agreement of mean rainfall fields, IMERG shows better characterization of gauge observations when separating rainfall detection and rainfall rate estimation. At corresponding space–time scales, IMERG shows better estimation of gauge rainfall probability distributions than TMPA. However, IMERG shows no improvement in both rainfall detection and rainfall rate estimation along the dry Peruvian coastline, where major random and systematic errors persist. Further research is required to identify which rainfall intensities are missed or falsely detected and how errors can be attributed to specific satellite sensor retrievals. The satellite–gauge difference was associated with the point-area difference in spatial support between gauges and satellite precipitation products, particularly in areas with low and irregular gauge network coverage. Future satellite–gauge evaluations need to identify such locations and investigate more closely interpixel point-area differences before attributing uncertainties to satellite products

    Effect of substrate thermal resistance on space-domain microchannel

    Get PDF
    In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler
    corecore